Soluble epoxide hydrolase deficiency or inhibition attenuates diet-induced endoplasmic reticulum stress in liver and adipose tissue.

نویسندگان

  • Ahmed Bettaieb
  • Naoto Nagata
  • Daniel AbouBechara
  • Samah Chahed
  • Christophe Morisseau
  • Bruce D Hammock
  • Fawaz G Haj
چکیده

Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has beneficial effects in cardiovascular, inflammatory, and metabolic diseases in murine models. Mice with targeted deletion or pharmacological inhibition of sEH exhibit improved insulin signaling in liver and adipose tissue. Herein, we assessed the role of sEH in regulating endoplasmic reticulum (ER) stress in liver and adipose tissue. We report that sEH expression was increased in the livers and adipose tissue of mice fed a high fat diet, the adipose tissue of overweight humans, and palmitate-treated cells. Importantly, sEH deficiency or inhibition in mice attenuated chronic high fat diet-induced ER stress in liver and adipose tissue. Similarly, pharmacological inhibition of sEH in HepG2 cells and 3T3-L1 adipocytes mitigated chemical-induced ER stress and activation of JNK, p38, and cell death. In addition, insulin signaling was enhanced in HepG2 cells treated with sEH substrates and attenuated in cells treated with sEH products. In summary, these findings demonstrate that sEH is a physiological modulator of ER stress and a potential target for mitigating complications associated with obesity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Podocyte-specific soluble epoxide hydrolase deficiency in mice attenuates acute kidney injury.

Podocytes play an important role in maintaining glomerular function, and podocyte injury is a significant component in the pathogenesis of proteinuria. Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose genetic deficiency and pharmacological inhibition have beneficial effects on renal function, but its role in podocytes remains unexplored. The objective of this study was to investigate...

متن کامل

Soluble epoxide hydrolase in podocytes is a significant contributor to renal function under hyperglycemia.

BACKGROUND Diabetic nephropathy (DN) is the leading cause of renal failure, and podocyte dysfunction contributes to the pathogenesis of DN. Soluble epoxide hydrolase (sEH, encoded by Ephx2) is a conserved cytosolic enzyme whose inhibition has beneficial effects on renal function. The aim of this study is to investigate the contribution of sEH in podocytes to hyperglycemia-induced renal injury. ...

متن کامل

Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice.

Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on t...

متن کامل

Inhibition of Soluble Epoxide Hydrolase Attenuates High-Fat-Diet–Induced Hepatic Steatosis by Reduced Systemic Inflammatory Status in Mice

Non-alcoholic fatty liver disease is associated with obesity and considered an inflammatory disease. Soluble epoxide hydrolase (sEH) is a major enzyme hydrolyzing epoxyeicosatrienoic acids and attenuates their cardiovascular protective and anti-inflammatory effects. We examined whether sEH inhibition can protect against high-fat (HF)-diet-induced fatty liver in mice and the underlying mechanism...

متن کامل

Soluble Epoxide Hydrolase Pharmacological Inhibition Ameliorates Experimental Acute Pancreatitis in Mice.

Acute pancreatitis (AP) is an inflammatory disease, and is one of the most common gastrointestinal disorders worldwide. Soluble epoxide hydrolase (sEH; encoded by Ephx2) deficiency and pharmacological inhibition have beneficial effects in inflammatory diseases. Ephx2 whole-body deficiency mitigates experimental AP in mice, but the suitability of sEH pharmacological inhibition for treating AP re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 288 20  شماره 

صفحات  -

تاریخ انتشار 2013